Metabolomics aims to provide novel insights into the biochemical reactions of organisms by characterising the presence and concentrations of low molecular weight compounds from biological samples. The primary analytical tools for such high-throughput data collection are mass spectrometry (MS), often preceded by chromatographic or electrophoretic separation technologies, and nuclear magnetic resonance spectroscopy (NMR).
These technologies produce relatively large and complex data sets that require bioinformaticians, cheminformaticians, biostatisticians, data scientists and computer scientists. Together they develop and apply a wide range of algorithms, software tools, repositories and computational resources to process, analyse, report and store the data and metadata.
Increasingly, insights from genomics, epigenomics, transcriptomics, proteomics/protein interactomics and metabolomics are combined, to gain insights into the dynamics of biological processes. Metabolomics activities are well represented within Europe and ELIXIR nodes. Metabolite identification is the area that the community believes will have maximal impact of computational metabolomics and metabolomics data management and will benefit most from interactions with the existing five ELIXIR platforms and where progress will contribute most to other ELIXIR communities.
The progress through this integrative Implementation Study will benefit industry and academia alike as metabolite identification is one of the major bottlenecks in metabolomics and resolving this challenge requires a community effort.