This project addresses the limitations of current ontologies in capturing the dynamic nature of disordered protein regions by pursuing several primary objectives. Firstly, novel structural and functional ontologies will be developed to accurately represent the structural heterogeneity and dynamic functional annotations of proteins. These ontologies will incorporate timescales, annotating the kinetics of structural transformations to elucidate molecular mechanisms and regulatory pathways governing protein dynamics.
Collaborating with existing databases and consortia will ensure seamless integration of ontological resources and experimental data, fostering interoperability and accelerating discoveries. A standardised file format specification will also be developed in collaboration with the Human Proteome Organisation Proteomics Standards Initiative, facilitating the encoding of structural state transitions within disordered protein regions. This specification will enhance data interoperability and exchange among research groups and databases, providing a common language for describing structural transitions and advancing our understanding of the functional implications of protein dynamics in biological systems.